Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nutrients ; 13(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959902

RESUMEN

A study was conducted to determine the effects of a diet supplemented with fruits and vegetables (FV) on the host whole blood cell (WBC) transcriptome and the composition and function of the intestinal microbiome. Nine six-week-old pigs were fed a pig grower diet alone or supplemented with lyophilized FV equivalent to half the daily recommended amount prescribed for humans by the Dietary Guideline for Americans (DGA) for two weeks. Host transcriptome changes in the WBC were evaluated by RNA sequencing. Isolated DNA from the fecal microbiome was used for 16S rDNA taxonomic analysis and prediction of metabolomic function. Feeding an FV-supplemented diet to pigs induced differential expression of several genes associated with an increase in B-cell development and differentiation and the regulation of cellular movement, inflammatory response, and cell-to-cell signaling. Linear discriminant analysis effect size (LEfSe) in fecal microbiome samples showed differential increases in genera from Lachnospiraceae and Ruminococcaceae families within the order Clostridiales and Erysipelotrichaceae family with a predicted reduction in rgpE-glucosyltransferase protein associated with lipopolysaccharide biosynthesis in pigs fed the FV-supplemented diet. These results suggest that feeding an FV-supplemented diet for two weeks modulated markers of cellular inflammatory and immune function in the WBC transcriptome and the composition of the intestinal microbiome by increasing the abundance of bacterial taxa that have been associated with improved intestinal health.


Asunto(s)
Células Sanguíneas , Dieta/veterinaria , Suplementos Dietéticos , Frutas , Microbioma Gastrointestinal , Porcinos/metabolismo , Porcinos/microbiología , Transcriptoma , Verduras , Animales , Subgrupos de Linfocitos B/inmunología , Células Sanguíneas/inmunología , Clostridiales , Lipopolisacáridos/biosíntesis , Porcinos/inmunología , Factores de Tiempo
3.
Metabolites ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822437

RESUMEN

A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition.

4.
BMC Biol ; 18(1): 85, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631327

RESUMEN

BACKGROUND: Efforts to improve animal health, and understand genetic bases for production, may benefit from a comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown. Here, we present the largest collection of cattle DNA methylation epigenomic data to date. RESULTS: Using Holstein cattle, we generated 29 whole genome bisulfite sequencing (WGBS) datasets for 16 tissues, 47 corresponding RNA-seq datasets, and 2 whole genome sequencing datasets. We did read mapping and DNA methylation calling based on two different cattle assemblies, demonstrating the high quality of the long-read-based assembly markedly improved DNA methylation results. We observed large differences across cattle tissues in the methylation patterns of global CpG sites, partially methylated domains (PMDs), hypomethylated regions (HMRs), CG islands (CGIs), and common repeats. We detected that each tissue had a distinct set of PMDs, which showed tissue-specific patterns. Similar to human PMD, cattle PMDs were often linked to a general decrease of gene expression and a decrease in active histone marks and related to long-range chromatin organizations, like topologically associated domains (TADs). We tested a classification of the HMRs based on their distributions relative to transcription start sites (TSSs) and detected tissue-specific TSS-HMRs and genes that showed strong tissue effects. When performing cross-species comparisons of paired genes (two opposite strand genes with their TSS located in the same HMR), we found out they were more consistently co-expressed among human, mouse, sheep, goat, yak, pig, and chicken, but showed lower consistent ratios in more divergent species. We further used these WGBS data to detect 50,023 experimentally supported CGIs across bovine tissues and found that they might function as a guard against C-to-T mutations for TSS-HMRs. Although common repeats were often heavily methylated, some young Bov-A2 repeats were hypomethylated in sperm and could affect the promoter structures by exposing potential transcription factor binding sites. CONCLUSIONS: This study provides a comprehensive resource for bovine epigenomic research and enables new discoveries about DNA methylation and its role in complex traits.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Genoma , Animales , Bovinos , Islas de CpG , Epigenómica , Femenino , Masculino , Especificidad de Órganos , Secuenciación Completa del Genoma
5.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32543654

RESUMEN

BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


Asunto(s)
Biología Computacional/métodos , Genoma , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Sus scrofa/inmunología , Animales , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Investigación , Porcinos
6.
Genome Res ; 30(5): 790-801, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32424068

RESUMEN

By uniformly analyzing 723 RNA-seq data from 91 tissues and cell types, we built a comprehensive gene atlas and studied tissue specificity of genes in cattle. We demonstrated that tissue-specific genes significantly reflected the tissue-relevant biology, showing distinct promoter methylation and evolution patterns (e.g., brain-specific genes evolve slowest, whereas testis-specific genes evolve fastest). Through integrative analyses of those tissue-specific genes with large-scale genome-wide association studies, we detected relevant tissues/cell types and candidate genes for 45 economically important traits in cattle, including blood/immune system (e.g., CCDC88C) for male fertility, brain (e.g., TRIM46 and RAB6A) for milk production, and multiple growth-related tissues (e.g., FGF6 and CCND2) for body conformation. We validated these findings by using epigenomic data across major somatic tissues and sperm. Collectively, our findings provided novel insights into the genetic and biological mechanisms underlying complex traits in cattle, and our transcriptome atlas can serve as a primary source for biological interpretation, functional validation, studies of adaptive evolution, and genomic improvement in livestock.


Asunto(s)
Bovinos/genética , Transcriptoma , Animales , Bovinos/crecimiento & desarrollo , Bovinos/fisiología , Metilación de ADN , Femenino , Genes , Leche , Especificidad de Órganos , RNA-Seq , Reproducción
7.
Gigascience ; 9(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191811

RESUMEN

BACKGROUND: Major advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10-12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. RESULTS: We present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250× more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use. CONCLUSIONS: We demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species.


Asunto(s)
Cruzamiento/normas , Bovinos/genética , Genoma , Genómica/normas , Polimorfismo Genético , Animales , Cruzamiento/métodos , Genómica/métodos , RNA-Seq/métodos , RNA-Seq/normas , Estándares de Referencia , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
8.
G3 (Bethesda) ; 9(7): 2325-2336, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31097479

RESUMEN

We have estimated the average genetic diversity of two Glycine annual and six perennial species based upon 76 orthologous gene sets and performed phylogenetic analysis, divergence analysis and tests for departure from neutrality of the eight species using 52 orthologous gene sets. In addition, 367 orthologous gene sets were used to estimate the relationships of 11 G. canescens accessions. Among the perennials, G. canescens showed the highest nucleotide diversity. The other perennials, except for G. tomentella, had higher nucleotide diversity than the two annuals. Phylogenetic analysis of the Glycine showed a similar genome grouping with the previous report except for G. cyrtoloba and G. stenophita which formed a sister clade in the study. Divergence analysis supported the phylogenetic relationships that G. falcata was the most divergent from G. max, followed by G. cyrtoloba, G. syndetika, G. tomentella D3, G. stenophita and G. canescens Most genic sequences were homogeneous in the levels of polymorphism and divergence between G. max and other Glycine species based on the HKA test, thus, Glycine perennials may have experienced a very similar evolution as inferred by trans-specific mutation analysis. The greater genetic diversity of most perennial Glycine species and their origins from the warmer and drier climates of Australia suggests the perennials maybe a potential source of heat and drought resistance that will be of value in the face of climate change.


Asunto(s)
Fabaceae/clasificación , Fabaceae/genética , Variación Genética , Filogenia , Australia , Evolución Molecular , Geografía , Filogeografía , Polimorfismo Genético
9.
Funct Integr Genomics ; 19(3): 409-419, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30734132

RESUMEN

Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference water buffalo) to the UMD3.1 cattle genome, we identified 1,038 segmental duplications comprising 44.6 Mb (equivalent to ~1.73% of the cattle genome) of the autosomal and X chromosomal sequence in the buffalo genome. We experimentally validated 70.3% (71/101) of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water buffaloes, amounting to 59.8 Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNV regions overlap 1,245 genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was observed between the log2 ratios between copy number estimates and the log2 ratios of aCGH probes. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.


Asunto(s)
Búfalos/genética , Variaciones en el Número de Copia de ADN , Duplicaciones Segmentarias en el Genoma , Animales , Genoma
10.
Epigenetics ; 14(3): 260-276, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30810461

RESUMEN

Sperm DNA methylation is crucial for fertility and viability of offspring but epigenome evolution in mammals is largely understudied. By comparing sperm DNA methylomes and large-scale genome-wide association study (GWAS) signals between human and cattle, we aimed to examine the DNA methylome evolution and its associations with complex phenotypes in mammals. Our analysis revealed that genes with conserved non-methylated promoters (e.g., ANKS1A and WNT7A) among human and cattle were involved in common system and embryo development, and enriched for GWAS signals of body conformation traits in both species, while genes with conserved hypermethylated promoters (e.g., TCAP and CD80) were engaged in immune responses and highlighted by immune-related traits. On the other hand, genes with human-specific hypomethylated promoters (e.g., FOXP2 and HYDIN) were engaged in neuron system development and enriched for GWAS signals of brain-related traits, while genes with cattle-specific hypomethylated promoters (e.g., LDHB and DGAT2) mainly participated in lipid storage and metabolism. We validated our findings using sperm-retained nucleosome, preimplantation transcriptome, and adult tissue transcriptome data, as well as sequence evolutionary features, including motif binding sites, mutation rates, recombination rates and evolution signatures. In conclusion, our results demonstrate important roles of epigenome evolution in shaping the genetic architecture underlying complex phenotypes, hence enhance signal prioritization in GWAS and provide valuable information for human neurological disorders and livestock genetic improvement.


Asunto(s)
Metilación de ADN , Epigenoma , Espermatozoides/fisiología , Animales , Bovinos , Evolución Molecular , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Masculino , Ratones , Herencia Multifactorial/genética , Tasa de Mutación , Regiones Promotoras Genéticas
11.
Epigenomes ; 3(2)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-34968233

RESUMEN

Decreased male fertility is a big concern in both human society and the livestock industry. Sperm DNA methylation is commonly believed to be associated with male fertility. However, due to the lack of accurate male fertility records (i.e., limited mating times), few studies have investigated the comprehensive impacts of sperm DNA methylation on male fertility in mammals. In this study, we generated 10 sperm DNA methylomes and performed a preliminary correlation analysis between signals from sperm DNA methylation and signals from large-scale (n = 27,214) genome-wide association studies (GWAS) of 35 complex traits (including 12 male fertility-related traits). We detected genomic regions, which experienced DNA methylation alterations in sperm and were associated with aging and extreme fertility phenotypes (e.g., sire-conception rate or SCR). In dynamic hypomethylated regions (HMRs) and partially methylated domains (PMDs), we found genes (e.g., HOX gene clusters and microRNAs) that were involved in the embryonic development. We demonstrated that genomic regions, which gained rather than lost methylations during aging, and in animals with low SCR were significantly and selectively enriched for GWAS signals of male fertility traits. Our study discovered 16 genes as the potential candidate markers for male fertility, including SAMD5 and PDE5A. Collectively, this initial effort supported a hypothesis that sperm DNA methylation may contribute to male fertility in cattle and revealed the usefulness of functional annotations in enhancing biological interpretation and genomic prediction for complex traits and diseases.

12.
Genome Announc ; 6(24)2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29903823

RESUMEN

Aeromonas bestiarum is a Gram-negative mesophilic motile bacterium causing acute hemorrhagic septicemia or chronic skin ulcers in fish. Here, we report the draft genome sequence of A. bestiarum strain GA97-22, which was isolated from rainbow trout in 1997. This genome sequence will improve our understanding of the complex taxonomy of motile aeromonads.

13.
BMC Genomics ; 19(1): 314, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29716533

RESUMEN

BACKGROUND: Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been applied in livestock, although few studies have focused on Holstein cattle. RESULTS: We describe 191 CNV detected using intensity data from over 700,000 SNP genotypes generated with the BovineHD Genotyping BeadChip (Illumina, San Diego, CA) in 528 Holstein cows. The CNV were used for GWAS analysis of 10 important production traits of 473 cattle related to feed intake, milk quality, and female fertility, as well as 2 composite traits of net merit and productive life. In total, we detected 57 CNV associated (P < 0.05 after false discovery rate correction) with at least one of the 10 phenotypes. Focusing on feed efficiency and intake-related phenotypes of residual feed intake and dry matter intake, we detected a single CNV associated with both traits which overlaps a predicted olfactory receptor gene OR2A2 (LOC787786). Additionally, 2 CNV within the RXFP4 (relaxin/insulin like family peptide receptor 4) and 2 additional olfactory receptor gene regions, respectively, were associated with residual feed intake. The RXFP4 gene encodes a receptor for an orexigenic peptide, insulin-like peptide 5 produced by intestinal L cells, which is expressed by enteric neurons. Olfactory receptors are critical for transmitting the effects of odorants, contributing to the sense of smell, and have been implicated in participating in appetite regulation. CONCLUSIONS: Our results identify CNV for genomic evaluation in Holstein cattle, and provide candidate genes, such as RXFP4, contributing to variation in feed efficiency and feed intake-related traits. These results indicate potential novel targets for manipulating feed intake-related traits of livestock.


Asunto(s)
Bovinos/genética , Variaciones en el Número de Copia de ADN/genética , Genómica , Animales , Bovinos/metabolismo , Femenino , Fertilidad/genética , Técnicas de Genotipaje , Leche/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
14.
Gigascience ; 7(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635292

RESUMEN

Background: Although sperm DNA methylation has been studied in humans and other species, its status in cattle is largely unknown. Results: Using whole-genome bisulfite sequencing (WGBS), we profiled the DNA methylome of cattle sperm through comparison with three somatic tissues (mammary gland, brain, and blood). Large differences between cattle sperm and somatic cells were observed in the methylation patterns of global CpGs, pericentromeric satellites, partially methylated domains (PMDs), hypomethylated regions (HMRs), and common repeats. As expected, we observed low methylation in the promoter regions and high methylation in the bodies of active genes. We detected selective hypomethylation of megabase domains of centromeric satellite clusters, which may be related to chromosome segregation during meiosis and their rapid transcriptional activation upon fertilization. We found more PMDs in sperm cells than in somatic cells and identified meiosis-related genes such asKIF2B and REPIN1, which are hypomethylated in sperm but hypermethylated in somatic cells. In addition to the common HMRs around gene promoters, which showed substantial differences between sperm and somatic cells, the sperm-specific HMRs also targeted to distinct spermatogenesis-related genes, including BOLL, MAEL, ASZ1, SYCP3, CTCFL, MND1, SPATA22, PLD6, DDX4, RBBP8, FKBP6, and SYCE1. Although common repeats were heavily methylated in both sperm and somatic cells, some young Bov-A2 repeats, which belong to the SINE family, were hypomethylated in sperm and could affect the promoter structures by introducing new regulatory elements. Conclusions: Our study provides a comprehensive resource for bovine sperm epigenomic research and enables new discoveries about DNA methylation and its role in male fertility.


Asunto(s)
Bovinos/genética , Metilación de ADN/genética , Genoma , Especificidad de Órganos/genética , Espermatozoides/metabolismo , Animales , Masculino , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Espermatozoides/citología , Testículo/metabolismo , Sitio de Iniciación de la Transcripción
15.
Front Genet ; 9: 57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527221

RESUMEN

Evolutionary adaptations are occasionally convergent solutions to the same problem. A mutation contributing to a heat tolerance adaptation in Senepol cattle, a New World breed of mostly European descent, results in the distinct phenotype known as slick, where an animal has shorter hair and lower follicle density across its coat than wild type animals. The causal variant, located in the 11th exon of prolactin receptor, produces a frameshift that results in a truncated protein. However, this mutation does not explain all cases of slick coats found in criollo breeds. Here, we obtained genome sequences from slick cattle of a geographically distinct criollo breed, namely Limonero, whose ancestors were originally brought to the Americas by the Spanish. These data were used to identify new causal alleles in the 11th exon of the prolactin receptor, two of which also encode shortened proteins that remove a highly conserved tyrosine residue. These new mutations explained almost 90% of investigated cases of animals that had slick coats, but which also did not carry the Senepol slick allele. These results demonstrate convergent evolution at the molecular level in a trait important to the adaptation of an animal to its environment.

16.
PLoS One ; 12(10): e0185220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28981529

RESUMEN

BACKGROUND: The availability of the bovine genome sequence and SNP panels has improved various genomic analyses, from exploring genetic diversity to aiding genetic selection. However, few of the SNP on the bovine chips are polymorphic in buffalo, therefore a panel of single nucleotide DNA markers exclusive for buffalo was necessary for molecular genetic analyses and to develop genomic selection approaches for water buffalo. The creation of a 90K SNP panel for river buffalo and testing in a genome wide association study for milk production is described here. METHODS: The genomes of 73 buffaloes of 4 different breeds were sequenced and aligned against the bovine genome, which facilitated the identification of 22 million of sequence variants among the buffalo genomes. Based on frequencies of variants within and among buffalo breeds, and their distribution across the genome, inferred from the bovine genome sequence, 90,000 putative single nucleotide polymorphisms were selected to create an Axiom® Buffalo Genotyping Array 90K. RESULTS: This 90K "SNP-Chip" was tested in several river buffalo populations and found to have ∼70% high quality and polymorphic SNPs. Of the 90K SNPs about 24K were also found to be polymorphic in swamp buffalo. The SNP chip was used to investigate the structure of buffalo populations, and could distinguish buffalo from different farms. A Genome Wide Association Study identified genomic regions on 5 chromosomes putatively involved in milk production. CONCLUSION: The 90K buffalo SNP chip described here is suitable for the analysis of the genomes of river buffalo breeds, and could be used for genetic diversity studies and potentially as a starting point for genome-assisted selection programmes. This SNP Chip could also be used to analyse swamp buffalo, but many loci are not informative and creation of a revised SNP set specific for swamp buffalo would be advised.


Asunto(s)
Búfalos/genética , Polimorfismo de Nucleótido Simple , Animales , Estudio de Asociación del Genoma Completo
17.
Nat Genet ; 49(4): 643-650, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28263316

RESUMEN

The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus) based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced what is, to our knowledge, the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ∼400-fold improvement in continuity due to properly assembled gaps, compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex yet produced for an individual of a ruminant species.


Asunto(s)
Cromatina/genética , Genoma/genética , Cabras/genética , Animales , Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética
18.
Genome Announc ; 5(3)2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28104665

RESUMEN

Aeromonas hydrophila is a Gram-negative bacterium that is particularly adapted to freshwater environments and can cause severe infections in fish and humans. Here, we report the draft genomes of three A. hydrophila catfish and tilapia isolates.

19.
BMC Genomics ; 17(1): 779, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716143

RESUMEN

BACKGROUND: As a major epigenetic component, DNA methylation plays important functions in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in economically important animals like cattle. RESULTS: Using reduced representation bisulphite sequencing (RRBS), we obtained single-base-resolution maps of bovine DNA methylation from ten somatic tissues. In total, we evaluated 1,868,049 cytosines in CG-enriched regions. While we found slightly low methylation levels (29.87 to 38.06 %) in cattle, the methylation contexts (CGs and non-CGs) of cattle showed similar methylation patterns to other species. Non-CG methylation was detected but methylation levels in somatic tissues were significantly lower than in pluripotent cells. To study the potential function of the methylation, we detected 10,794 differentially methylated cytosines (DMCs) and 836 differentially methylated CG islands (DMIs). Further analyses in the same tissues revealed many DMCs (including non-CGs) and DMIs, which were highly correlated with the expression of genes involved in tissue development. CONCLUSIONS: In summary, our study provides a baseline dataset and essential information for DNA methylation profiles of cattle.


Asunto(s)
Metilación de ADN , Expresión Génica , Animales , Bovinos , Islas de CpG , Epigénesis Genética , Epigenómica/métodos , Especificidad de Órganos/genética , Análisis de Secuencia de ADN
20.
Genome Announc ; 4(4)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540076

RESUMEN

Since 2009, a clonal group of virulent Aeromonas hydrophila strains has been causing severe disease in the catfish aquaculture industry in the southeastern United States. Here, we report draft genomes of four A. hydrophila isolates from catfish aquaculture that represent this clonal group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...